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Exercise 1

Let f, g . (Rd). Recall that in class we proved

— d ~

fxg=(2m)2 fg. (1)

Prove that

~

Feg=(2m)% fg. 2)

Hint: Consider the equivalent statement of (1) for the inverse of the Fourier transform
and apply it to fg.

Proof. Recall that the inverse Fourier transform is such that f (x) = f(—x). We then use
(1) to get

Given that fge . (Rd), using the formula we deduced for the inverse Fourier transform,
we can get
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Exercise 2
Let H be an Hilbert space and V a closed linear subspace of H.
a In class we proved that for any f € H there exists an element gy € V' such that
If =95 = min|f = h. (3)

Prove that g; is the unique element of V' that satisfies the minimum.



b In class we proved that g; is such that f —g; € V+. Prove that there is no other
element h € V such that f —he VL.

Proof. Recall the parallelogram law; for any f, g € H we have

1f +gl” + 1 = gl* =20 £1* + 290 (4)

To prove a, consider ¢’ € such that

N — nd o
|f = ¢/| =minf - Al

This implies in particular that |f — ¢'| = ||f — g¢|. By parallelogram law we deduce that
los =o' = (=) = (F = 9p’
=2|f =" +21f —gs* = |(f &) + (7 = 9p)°

1 2
—alf = gplP = J2f = (o + 9P = 41F gl = 4] = (o + 9

Given that V is a vector space, we get that % (¢' + gf) € V, and therefore
712 2 . 2
- <4|f- —4inf |f —h|"=0
los — I <41f — g51* — 4 inf |7 — ]
and therefore ¢’ = g;.

To prove b suppose that ¢’ € V is such that f — ¢’ € V+. Then by definition of V-, for
any h e V we get

<hvgf_g/>:<h7f_gl>_<h7f_gf>:07

where the last equality comes from the fact that both f — gf and f — ¢’ are in V. We
therefore have that gy — ¢’ € VL. At the same time, gf — ¢’ €V, and this implies ¢’ = g;.
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Exercise 3
Let H be an Hilbert space. Prove that there exists a basis for H. Prove moreover that H
is separable if and only if there exists a countable base for it.

Hint: For the first part apply Zorn’s Lemma to the set of (also infinite) orthonormal
systems ordered by inclusion. Prove that any mazimal orthonormal system is a base, i.e.
s dense.

For the second part prove and use the following fact: if f is an element of H and S is a

basis for H, there exists a sequence of elements {e,}, .y S S such that f € spanyg {en},cn-

Proof. To prove the first part, call A the set of all orthonormal systems in H, i.e.

A= {SQH <¢a¢/>: 5w,w’ VT/%WES}»



where dy, 4 is 1 if ¢ = 9" and 0 otherwise.

Consider then the set A with the partial order given by the inclusion. To apply Zorn’s
Lemma consider B an inductive ordered subset of .A. Consider moreover

Sp = U S.

SeB

We want to prove that this is an upper bound for B.

First we prove that S € A. Given that H is closed with respect to unions, Sy € H. Let
now 1, ¢’ € Sp; then there exist two orthonormal systems S, S’ such that ¥ € S € B
and 1’ € S’ € B; given that B is ordered, either S € S’ or S’ € S. Suppose S < S’; then
¥, 9" € S" and we get that (¢,9’) = &, 4, and therefore Sz € A. Given that for any S € B
we have S € Spg, this is clearly an upper bound for B.

We can now apply Zorn’s Lemma to deduce the existence of a maximal element of A.
What is left to prove is that this maximal element is a basis. Call S the maximal element;
by definition this is an orthonormal system. We prove that it is dense. Suppose it is not;
then! V := spang {S} is a well defined closed vector space such that H\V # @ and V*
is nonempty. Let now ¢ € V+ such that |¢| = 1 and let Sy := {¢} U S. Clearly S, < H;
consider ¢, ¢’ € Sy; if p # ¢ # ¢’ from the fact that S is an orthonormal system
we already know that (1),¢') = 0y 4. Suppose now ¢ € S; given that ¢ € VE we get
(b, ¢y = 0. Given that (¢,d) = |¢|* = 1 we deduce that Sy is an orthonormal system.
But now Sy, 2 S and Sy # S, which contradicts the maximality of S. Therefore S is a
basis for H.

To prove the second part, we first prove the fact in the hint. Indeed, f € H implies that
there exists a sequence {fy}, oy such that f,, — f and

N(n)
fn = Z aj,nej,n
7=1

c S. Given that the latter is a

for some N (n) € N, {ajn}; oy = K and {ejn}; oy <

countable sequence in S this proves the fact.

Now, we use this fact to prove our Exercise; suppose that H is separable; therefore, there
exists D a dense subset of  which is countable, i.e., D = {d,}, .. But for every n e N, d,,
is in the span of .S, a countable subset of S; we then get the following chain of inequalities:

and the inequalities are in fact equalities.

From this we get that | J,,.y Sn is dense in H and given that . Sn < 5, this is also an
orthonormal system, therefore is a basis. Moreover, it is union of countable sets, so it is
also countable, and this proves the first implication.

Suppose now that S is a countable basis for . Recall that Q is dense in R and that Q+:Q
is dense in C. Call then F a countable dense subset of K We have that D := spany {S} is
countable and dense in H.

'"We indicate with spany{A} the set of finite linear combinations of elements in A with coefficients in
K.



Exercise 4

Let A, B bounded operators on an Hilbert space H and «, 8 € C. Prove the following
equalities:

id* = id (5)

(A7)* = (6)
(AB)" = B*A* (7)

(aA + BB)* = aA* + fB*. (8)

Moreover, prove that A* is bounded and that |A*|| = ||A]|.

Proof. For the proof of (5) consider ¢ € ‘H. For any ¢ € H from the definition of the
adjoint we get

(¢,id* ) = id ¢, ) = (¢, ¢y = ($,id" Y — 1)) = 0,
and by density we can imply that id* ¢ = ).

For the proof of (6) we get that for any ¢, 1 € H

(o, (A") ) = (A", ) = (U, A*¢) = (A, ¢) = (¢, A).

Analogously as before we conclude by density that (4*)* = A.

For the proof of (7) we get that for any ¢, ¥ € H

(6, (AB)* ) = (AB¢, ) = (B, A™t)p) = (¢, B*A™).

For the proof of (8) we get that for any ¢, ¥ € H

(¢, (@A + BB)* ) = {(aA + BB) ¢, ) = al A, ¥) + B(Bep, 1)
= a(p, A*V) + Blo, B*Y) = (¢, (AA* + BB*) ¥,

and we can conclude again by density.

To see that A* is bounded consider ¥ € H; then we have

|A*|* = (A*, A*y) = (b, AA* ) < [$] |AA*¢| < o] |A] A%,
and therefore we get |A*y| < ||A] [¢]; as a consequence we get | A*| < ||A|, and therefore
|A*| < A = [(A")*] < A%,

and hence |A*| = ||A].



