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Exercise 1

Let f, g P S
`

Rd
˘

. Recall that in class we proved

zf ˚ g “ p2πq
d
2 pfpg. (1)

Prove that
pf ˚ pg “ p2πq

d
2 xfg. (2)

Hint: Consider the equivalent statement of (1) for the inverse of the Fourier transform

and apply it to xfg.

Proof. Recall that the inverse Fourier transform is such that qf pxq “ pf p´xq. We then use
(1) to get

~f ˚ g pxq “ zf ˚ g p´xq “ p2πq
d
2 pf p´xq pg p´xq “ p2πq

d
2 qf pxq qg pxq .

To prove (2), consider f, g P S
`

Rd
˘

. Then we know that

q

pf “ f, q

pg “ g.

Given that fg P S
`

Rd
˘

, using the formula we deduced for the inverse Fourier transform,
we can get

xfg “
x

q

pfqpg“ p2πq´
d
2

z

~

pf ˚ pg“ p2πq´
d
2 pf ˚ pg.

Exercise 2

Let H be an Hilbert space and V a closed linear subspace of H.

a In class we proved that for any f P H there exists an element gf P V such that

}f ´ gf } “ min
hPV

}f ´ h} . (3)

Prove that gf is the unique element of V that satisfies the minimum.
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b In class we proved that gf is such that f ´ gf P V
K. Prove that there is no other

element h P V such that f ´ h P V K.

Proof. Recall the parallelogram law; for any f, g P H we have

}f ` g}2 ` }f ´ g}2 “ 2 }f}2 ` 2 }g}2 . (4)

To prove a, consider g1 P such that
›

›f ´ g1
›

› “ min
hPV

}f ´ h} .

This implies in particular that }f ´ g1} “ }f ´ gf }. By parallelogram law we deduce that

›

›gf ´ g
1
›

›

2
“

›

›

`

f ´ g1
˘

´ pf ´ gf q
›

›

2

“ 2
›

›f ´ g1
›

›

2
` 2 }f ´ gf }

2
´
›

›

`

f ´ g1
˘

` pf ´ gf q
›

›

2

“ 4 }f ´ gf }
2
´
›

›2f ´
`

g1 ` gf
˘›

›

2
“ 4 }f ´ gf }

2
´ 4

›

›

›

›

f ´
1

2

`

g1 ` gf
˘

›

›

›

›

2

.

Given that V is a vector space, we get that 1
2 pg

1 ` gf q P V , and therefore

›

›gf ´ g
1
›

›

2
ď 4 }f ´ gf }

2
´ 4 inf

hPV
}f ´ h}2 “ 0

and therefore g1 “ gf .

To prove b suppose that g1 P V is such that f ´ g1 P V K. Then by definition of V K, for
any h P V we get

xh, gf ´ g
1y “ xh, f ´ g1y ´ xh, f ´ gf y “ 0,

where the last equality comes from the fact that both f ´ gf and f ´ g1 are in V K. We
therefore have that gf ´ g

1 P V K. At the same time, gf ´ g
1 P V , and this implies g1 “ gf .

Exercise 3

Let H be an Hilbert space. Prove that there exists a basis for H. Prove moreover that H
is separable if and only if there exists a countable base for it.

Hint: For the first part apply Zorn’s Lemma to the set of (also infinite) orthonormal
systems ordered by inclusion. Prove that any maximal orthonormal system is a base, i.e.
is dense.

For the second part prove and use the following fact: if f is an element of H and S is a
basis for H, there exists a sequence of elements tenunPN Ď S such that f P spanK tenunPN.

Proof. To prove the first part, call A the set of all orthonormal systems in H, i.e.

A :“
 

S Ď H : xψ,ψ1y “ δψ,ψ1 @ψ,ψ1 P S
(

,
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where δψ,ψ1 is 1 if ψ “ ψ1 and 0 otherwise.

Consider then the set A with the partial order given by the inclusion. To apply Zorn’s
Lemma consider B an inductive ordered subset of A. Consider moreover

SB :“
ď

SPB
S.

We want to prove that this is an upper bound for B.

First we prove that SB P A. Given that H is closed with respect to unions, SB Ď H. Let
now ψ, ψ1 P SB; then there exist two orthonormal systems S, S1 such that ψ P S P B
and ψ1 P S1 P B; given that B is ordered, either S Ď S1 or S1 Ď S. Suppose S Ď S1; then
ψ,ψ1 P S1 and we get that xψ,ψ1y “ δψ,ψ1 , and therefore SB P A. Given that for any S P B
we have S Ď SB, this is clearly an upper bound for B.

We can now apply Zorn’s Lemma to deduce the existence of a maximal element of A.
What is left to prove is that this maximal element is a basis. Call S the maximal element;
by definition this is an orthonormal system. We prove that it is dense. Suppose it is not;
then1 V :“ spanKtSu is a well defined closed vector space such that HzV ‰ ∅ and V K

is nonempty. Let now φ P V K such that }φ} “ 1 and let Sφ :“ tφu Y S. Clearly Sφ Ď H;
consider ψ, ψ1 P Sφ; if ψ ‰ φ ‰ ψ1 from the fact that S is an orthonormal system
we already know that xψ,ψ1y “ δψ,ψ1 . Suppose now ψ P S; given that φ P V K we get

xψ, φy “ 0. Given that xφ, φy “ }φ}2 “ 1 we deduce that Sψ is an orthonormal system.
But now Sψ Ě S and Sψ ‰ S, which contradicts the maximality of S. Therefore S is a
basis for H.

To prove the second part, we first prove the fact in the hint. Indeed, f P H implies that
there exists a sequence tfnunPN such that fn Ñ f and

fn “

Npnq
ÿ

j“1

aj,nej,n

for some N pnq P N, taj,nuj,nPN Ď K and tej,nuj,nPN Ď S. Given that the latter is a
countable sequence in S this proves the fact.

Now, we use this fact to prove our Exercise; suppose that H is separable; therefore, there
exists D a dense subset of H which is countable, i.e., D “ tdnunPN. But for every n P N, dn
is in the span of Sn a countable subset of S; we then get the following chain of inequalities:

H “ D “ tdnunPN Ď
ď

nPN
Sn Ď S “ H,

and the inequalities are in fact equalities.

From this we get that
Ť

nPN Sn is dense in H and given that
Ť

nPN Sn Ă S, this is also an
orthonormal system, therefore is a basis. Moreover, it is union of countable sets, so it is
also countable, and this proves the first implication.

Suppose now that S is a countable basis for H. Recall that Q is dense in R and that Q`iQ
is dense in C. Call then F a countable dense subset of K We have that D :“ spanF tSu is
countable and dense in H.

1We indicate with spanKtAu the set of finite linear combinations of elements in A with coefficients in
K.
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Exercise 4

Let A, B bounded operators on an Hilbert space H and α, β P C. Prove the following
equalities:

id˚ “ id (5)

pA˚q˚ “ A (6)

pABq˚ “ B˚A˚ (7)

pαA` βBq˚ “ αA˚ ` βB˚. (8)

Moreover, prove that A˚ is bounded and that }A˚} “ }A}.

Proof. For the proof of (5) consider ψ P H. For any φ P H from the definition of the
adjoint we get

xφ, id˚ ψy “ xidφ, ψy “ xφ, ψy ñ xφ, id˚ ψ ´ ψy “ 0,

and by density we can imply that id˚ ψ “ ψ.

For the proof of (6) we get that for any φ, ψ P H

xφ, pA˚q˚ ψy “ xA˚φ, ψy “ xψ,A˚φy “ xAψ, φy “ xφ,Aψy.

Analogously as before we conclude by density that pA˚q˚ “ A.

For the proof of (7) we get that for any φ, ψ P H

xφ, pABq˚ ψy “ xABφ,ψy “ xBφ,A˚ψy “ xφ,B˚A˚ψy.

For the proof of (8) we get that for any φ, ψ P H

xφ, pαA` βBq˚ ψy “ xpαA` βBqφ, ψy “ αxAφ,ψy ` βxBφ,ψy

“ αxφ,A˚ψy ` βxφ,B˚ψy “ xφ,
`

αA˚ ` βB˚
˘

ψy,

and we can conclude again by density.

To see that A˚ is bounded consider ψ P H; then we have

}A˚ψ}2 “ xA˚ψ,A˚ψy “ xψ,AA˚ψy ď }ψ} }AA˚ψ} ď }ψ} }A} }A˚ψ} ,

and therefore we get }A˚ψ} ď }A} }ψ}; as a consequence we get }A˚} ď }A}, and therefore

}A˚} ď }A} “
›

›pA˚q˚
›

› ď }A˚} ,

and hence }A˚} “ }A}.
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