

Introduction to Mathematical Quantum Theory

Solution to the Exercises

– 10.03.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $f, g \in \mathcal{S}(\mathbb{R}^d)$. Recall that in class we proved

$$\widehat{f * g} = (2\pi)^{\frac{d}{2}} \widehat{f} \widehat{g}. \quad (1)$$

Prove that

$$\widehat{f * g} = (2\pi)^{\frac{d}{2}} \widehat{f} \widehat{g}. \quad (2)$$

Hint: Consider the equivalent statement of (1) for the inverse of the Fourier transform and apply it to $\widehat{f} \widehat{g}$.

Proof. Recall that the inverse Fourier transform is such that $\check{f}(\mathbf{x}) = \widehat{f}(-\mathbf{x})$. We then use (1) to get

$$\widetilde{f * g}(\mathbf{x}) = \widehat{f * g}(-\mathbf{x}) = (2\pi)^{\frac{d}{2}} \widehat{f}(-\mathbf{x}) \widehat{g}(-\mathbf{x}) = (2\pi)^{\frac{d}{2}} \check{f}(\mathbf{x}) \check{g}(\mathbf{x}).$$

To prove (2), consider $f, g \in \mathcal{S}(\mathbb{R}^d)$. Then we know that

$$\check{\widehat{f}} = f, \quad \check{\widehat{g}} = g.$$

Given that $fg \in \mathcal{S}(\mathbb{R}^d)$, using the formula we deduced for the inverse Fourier transform, we can get

$$\widehat{f} \widehat{g} = \widehat{\check{\widehat{f}} \check{\widehat{g}}} = (2\pi)^{-\frac{d}{2}} \widehat{\check{\widehat{f}} * \check{\widehat{g}}} = (2\pi)^{-\frac{d}{2}} \widehat{f * g}.$$

□

Exercise 2

Let \mathcal{H} be an Hilbert space and V a closed linear subspace of \mathcal{H} .

a In class we proved that for any $f \in \mathcal{H}$ there exists an element $g_f \in V$ such that

$$\|f - g_f\| = \min_{h \in V} \|f - h\|. \quad (3)$$

Prove that g_f is the unique element of V that satisfies the minimum.

b In class we proved that g_f is such that $f - g_f \in V^\perp$. Prove that there is no other element $h \in V$ such that $f - h \in V^\perp$.

Proof. Recall the parallelogram law; for any $f, g \in \mathcal{H}$ we have

$$\|f + g\|^2 + \|f - g\|^2 = 2\|f\|^2 + 2\|g\|^2. \quad (4)$$

To prove **a**, consider $g' \in V$ such that

$$\|f - g'\| = \min_{h \in V} \|f - h\|.$$

This implies in particular that $\|f - g'\| = \|f - g_f\|$. By parallelogram law we deduce that

$$\begin{aligned} \|g_f - g'\|^2 &= \|(f - g') - (f - g_f)\|^2 \\ &= 2\|f - g'\|^2 + 2\|f - g_f\|^2 - \|(f - g') + (f - g_f)\|^2 \\ &= 4\|f - g_f\|^2 - \|2f - (g' + g_f)\|^2 = 4\|f - g_f\|^2 - 4\left\|f - \frac{1}{2}(g' + g_f)\right\|^2. \end{aligned}$$

Given that V is a vector space, we get that $\frac{1}{2}(g' + g_f) \in V$, and therefore

$$\|g_f - g'\|^2 \leq 4\|f - g_f\|^2 - 4 \inf_{h \in V} \|f - h\|^2 = 0$$

and therefore $g' = g_f$.

To prove **b** suppose that $g' \in V$ is such that $f - g' \in V^\perp$. Then by definition of V^\perp , for any $h \in V$ we get

$$\langle h, g_f - g' \rangle = \langle h, f - g' \rangle - \langle h, f - g_f \rangle = 0,$$

where the last equality comes from the fact that both $f - g_f$ and $f - g'$ are in V^\perp . We therefore have that $g_f - g' \in V^\perp$. At the same time, $g_f - g' \in V$, and this implies $g' = g_f$.

□

Exercise 3

Let \mathcal{H} be an Hilbert space. Prove that there exists a basis for \mathcal{H} . Prove moreover that \mathcal{H} is separable if and only if there exists a countable base for it.

Hint: For the first part apply Zorn's Lemma to the set of (also infinite) orthonormal systems ordered by inclusion. Prove that any maximal orthonormal system is a base, i.e. is dense.

For the second part prove and use the following fact: if f is an element of \mathcal{H} and S is a basis for \mathcal{H} , there exists a sequence of elements $\{e_n\}_{n \in \mathbb{N}} \subseteq S$ such that $f \in \text{span}_{\mathbb{K}} \{e_n\}_{n \in \mathbb{N}}$.

Proof. To prove the first part, call \mathcal{A} the set of all orthonormal systems in \mathcal{H} , i.e.

$$\mathcal{A} := \{S \subseteq \mathcal{H} : \langle \psi, \psi' \rangle = \delta_{\psi, \psi'} \ \forall \psi, \psi' \in S\},$$

where $\delta_{\psi,\psi'}$ is 1 if $\psi = \psi'$ and 0 otherwise.

Consider then the set \mathcal{A} with the partial order given by the inclusion. To apply Zorn's Lemma consider \mathcal{B} an inductive ordered subset of \mathcal{A} . Consider moreover

$$S_{\mathcal{B}} := \bigcup_{S \in \mathcal{B}} S.$$

We want to prove that this is an upper bound for \mathcal{B} .

First we prove that $S_{\mathcal{B}} \in \mathcal{A}$. Given that \mathcal{H} is closed with respect to unions, $S_{\mathcal{B}} \subseteq \mathcal{H}$. Let now $\psi, \psi' \in S_{\mathcal{B}}$; then there exist two orthonormal systems S, S' such that $\psi \in S \in \mathcal{B}$ and $\psi' \in S' \in \mathcal{B}$; given that \mathcal{B} is ordered, either $S \subseteq S'$ or $S' \subseteq S$. Suppose $S \subseteq S'$; then $\psi, \psi' \in S'$ and we get that $\langle \psi, \psi' \rangle = \delta_{\psi,\psi'}$, and therefore $S_{\mathcal{B}} \in \mathcal{A}$. Given that for any $S \in \mathcal{B}$ we have $S \subseteq S_{\mathcal{B}}$, this is clearly an upper bound for \mathcal{B} .

We can now apply Zorn's Lemma to deduce the existence of a maximal element of \mathcal{A} . What is left to prove is that this maximal element is a basis. Call S the maximal element; by definition this is an orthonormal system. We prove that it is dense. Suppose it is not; then¹ $V := \text{span}_{\mathbb{K}}\{S\}$ is a well defined closed vector space such that $\mathcal{H} \setminus V \neq \emptyset$ and V^\perp is nonempty. Let now $\phi \in V^\perp$ such that $\|\phi\| = 1$ and let $S_{\phi} := \{\phi\} \cup S$. Clearly $S_{\phi} \subseteq \mathcal{H}$; consider $\psi, \psi' \in S_{\phi}$; if $\psi \neq \phi \neq \psi'$ from the fact that S is an orthonormal system we already know that $\langle \psi, \psi' \rangle = \delta_{\psi,\psi'}$. Suppose now $\psi \in S$; given that $\phi \in V^\perp$ we get $\langle \psi, \phi \rangle = 0$. Given that $\langle \phi, \phi \rangle = \|\phi\|^2 = 1$ we deduce that S_{ϕ} is an orthonormal system. But now $S_{\phi} \supseteq S$ and $S_{\phi} \neq S$, which contradicts the maximality of S . Therefore S is a basis for \mathcal{H} .

To prove the second part, we first prove the fact in the hint. Indeed, $f \in \mathcal{H}$ implies that there exists a sequence $\{f_n\}_{n \in \mathbb{N}}$ such that $f_n \rightarrow f$ and

$$f_n = \sum_{j=1}^{N(n)} a_{j,n} e_{j,n}$$

for some $N(n) \in \mathbb{N}$, $\{a_{j,n}\}_{j,n \in \mathbb{N}} \subseteq \mathbb{K}$ and $\{e_{j,n}\}_{j,n \in \mathbb{N}} \subseteq S$. Given that the latter is a countable sequence in S this proves the fact.

Now, we use this fact to prove our Exercise; suppose that \mathcal{H} is separable; therefore, there exists D a dense subset of \mathcal{H} which is countable, i.e., $D = \{d_n\}_{n \in \mathbb{N}}$. But for every $n \in \mathbb{N}$, d_n is in the span of S_n a countable subset of S ; we then get the following chain of inequalities:

$$\mathcal{H} = \overline{D} = \overline{\{d_n\}_{n \in \mathbb{N}}} \subseteq \overline{\bigcup_{n \in \mathbb{N}} S_n} \subseteq \overline{S} = \mathcal{H},$$

and the inequalities are in fact equalities.

From this we get that $\bigcup_{n \in \mathbb{N}} S_n$ is dense in \mathcal{H} and given that $\bigcup_{n \in \mathbb{N}} S_n \subset S$, this is also an orthonormal system, therefore is a basis. Moreover, it is union of countable sets, so it is also countable, and this proves the first implication.

Suppose now that S is a countable basis for \mathcal{H} . Recall that \mathbb{Q} is dense in \mathbb{R} and that $\mathbb{Q} + i\mathbb{Q}$ is dense in \mathbb{C} . Call then \mathbb{F} a countable dense subset of \mathbb{K} . We have that $D := \text{span}_{\mathbb{F}}\{S\}$ is countable and dense in \mathcal{H} .

¹We indicate with $\text{span}_{\mathbb{K}}\{A\}$ the set of finite linear combinations of elements in A with coefficients in \mathbb{K} .

□

Exercise 4

Let A, B bounded operators on an Hilbert space \mathcal{H} and $\alpha, \beta \in \mathbb{C}$. Prove the following equalities:

$$\text{id}^* = \text{id} \quad (5)$$

$$(A^*)^* = A \quad (6)$$

$$(AB)^* = B^*A^* \quad (7)$$

$$(\alpha A + \beta B)^* = \bar{\alpha}A^* + \bar{\beta}B^*. \quad (8)$$

Moreover, prove that A^* is bounded and that $\|A^*\| = \|A\|$.

Proof. For the proof of (5) consider $\psi \in \mathcal{H}$. For any $\phi \in \mathcal{H}$ from the definition of the adjoint we get

$$\langle \phi, \text{id}^* \psi \rangle = \langle \text{id} \phi, \psi \rangle = \langle \phi, \psi \rangle \Rightarrow \langle \phi, \text{id}^* \psi - \psi \rangle = 0,$$

and by density we can imply that $\text{id}^* \psi = \psi$.

For the proof of (6) we get that for any $\phi, \psi \in \mathcal{H}$

$$\langle \phi, (A^*)^* \psi \rangle = \langle A^* \phi, \psi \rangle = \overline{\langle \psi, A^* \phi \rangle} = \overline{\langle A \psi, \phi \rangle} = \langle \phi, A \psi \rangle.$$

Analogously as before we conclude by density that $(A^*)^* = A$.

For the proof of (7) we get that for any $\phi, \psi \in \mathcal{H}$

$$\langle \phi, (AB)^* \psi \rangle = \langle AB\phi, \psi \rangle = \langle B\phi, A^*\psi \rangle = \langle \phi, B^*A^*\psi \rangle.$$

For the proof of (8) we get that for any $\phi, \psi \in \mathcal{H}$

$$\begin{aligned} \langle \phi, (\alpha A + \beta B)^* \psi \rangle &= \langle (\alpha A + \beta B) \phi, \psi \rangle = \bar{\alpha} \langle A \phi, \psi \rangle + \bar{\beta} \langle B \phi, \psi \rangle \\ &= \bar{\alpha} \langle \phi, A^* \psi \rangle + \bar{\beta} \langle \phi, B^* \psi \rangle = \langle \phi, (\bar{\alpha} A^* + \bar{\beta} B^*) \psi \rangle, \end{aligned}$$

and we can conclude again by density.

To see that A^* is bounded consider $\psi \in \mathcal{H}$; then we have

$$\|A^* \psi\|^2 = \langle A^* \psi, A^* \psi \rangle = \langle \psi, AA^* \psi \rangle \leq \|\psi\| \|AA^* \psi\| \leq \|\psi\| \|A\| \|A^* \psi\|,$$

and therefore we get $\|A^* \psi\| \leq \|A\| \|\psi\|$; as a consequence we get $\|A^*\| \leq \|A\|$, and therefore

$$\|A^*\| \leq \|A\| = \|(A^*)^*\| \leq \|A^*\|,$$

and hence $\|A^*\| = \|A\|$.

□